
DBSCAN
A project work on the course

Clustering Methods

Ville Kumpulainen
University of Eastern Finland

February 29, 2012

Abstract

This paper is a semi-scientific paper representing density-based spa-
tial clustering of applications with noise (DBSCAN) and some exper-
imentations in an attempt to induce convenient parameters for DB-
SCAN automatically.

2

Contents

1 Introduction 4
1.1 Issues of traditional clustering methods 4
1.2 Pros of DBSCAN . 5
1.3 Cons of DBSCAN . 5

2 DBSCAN 7
2.1 Definitions . 7
2.2 The algorithm . 8

2.2.1 Time complexity . 9
2.3 Inducing convenient parameters for DBSCAN 9

2.3.1 The algorithm . 10
2.3.2 Time complexity of the algorithm 13
2.3.3 Evaluation of the algorithm 13
2.3.4 Conclusions . 16
2.3.5 Future work . 16

A Software usage 18
A.1 Preparations . 18
A.2 Usage . 18

B Material of the course project work 19
B.1 Access to the material . 19
B.2 Contents of the directory . 19

1 Introduction

1.1 Issues of traditional clustering methods

Traditional clustering methods, such as K-Means or Randomized Local Search,
introduce variety of problems. These issues are related (but not limited) to
optimal parameters, varying initial settings, clusters with arbitrary shape
and noisy measurements.

The major challenge in finding optimal parameters for an algorithm is
usually number of clusters, as in most cases it is not concluded by the al-
gorithm itself. Non-optimal number of clusters may result visually uniform
and dense sections being splitted in halves (usually from the middle of a
segment, which tends to be the densest part) or joined under one cluster.

Varying initial settings, such as initial position of centroids, have an
considerable impact to the result of the algorithm. Therefore some of the
outputs provided by a clustering method are not optimal with respect to the
selected clustering method. Effect of random initial positioning of centroids
is demonstrated in figure 1.

(a) Result 1 (b) Result 2 (c) Result 3

Figure 1: Illustration of K-means’ dependency on initial centroid positioning

Traditional methods based on local repartitioning after moving centroids
according to their current partitioning, such as K-means or Randomized
Local Search, are based on repartitioning the clusters according to distance
metric, usually Euclidean metric. Due to this repartitioning criterion those
methods are generally efficient for finding packed sets of data that span
uniformly to all dimensions, therefore forming sets of spherical shapes. In
real life measurements, however, occuring patterns may have non-spherical
shapes. Therefore some of the traditional methods are generally less than
ideal for detecting patterns with arbitrary shape.

In practical problems data usually has distorted isolated measurements
due to measurement errors or randomness of the measured object. These
outliers usually interfere the clustering process, hence reducing and intro-

4

ducing randomness to the overall quality of the clustering.

1.2 Pros of DBSCAN

DBSCAN addresses some of the mentioned issues.
Implementations of DBSCAN ideally have no randomness; the output of

the method is repeatable due to its definitions. Therefore there is no need
for repetition "in case that the initial clustering was just abnormally bad".

As opposed to some of the traditional methods, DBSCAN is able to detect
noise. This results more accurate clustering without interfering outliers.

Number of clusters is induced automatically during the process. Due to
automatic inducing of clusters based on densities there is no possibility of
DBSCAN splitting dense (dense w.r.t provided parameters, that is) segments
in multiple clusters.

DBSCAN classifies dense visually uniform segments with arbitrary shape
to the same cluster. It outperforms CLARANS, another arbitrary shape
detecting clustering algorithm, in terms of computing time [1].

Illustration emphasizing some of these mentioned aspects can be seen in
figure 2.

(a) Possible outcome on K-means (b) DBSCAN

Figure 2: Illustration of possible results on K-means and DBSCAN with
data that is packed in visually distinct segments

1.3 Cons of DBSCAN

Criterion for density remains the same during the clustering process. This
is, however, not optimal procedure for data having clusters with varying
densities: either sparse clusters may be considered as a mixture of noise and
small isolated clusters as a result of too hard criterion or noise is incorrectly
classified as a part of a cluster as a result of more allowing criterion. In
either case the result may differ from desired outcome.

5

MSE, or any other function emphasizing minimal distances inside a clus-
ter, is a bad measure for evaluating goodness of DBSCAN mainly for two
reasons: cluster centroids are not defined in DBSCAN and, if they were,
MSE of DBSCAN clustering is rarely the best one: DBSCAN detects opti-
mal shapes in terms of density rather than minimal intra-cluster distances.
In addition, as most traditional methods concentrate on minimizing the MSE
or at least detect clusters with spherical shapes, which is approximately ideal
shape in terms of minimal MSE, DBSCAN seems the least desirable algo-
rithm in comparison. The difference is likely to increase in favor of the other
clustering algorithms when clusters detected by DBSCAN are elongated or
concave.

6

2 DBSCAN

2.1 Definitions

Let

• D be the number of data points

• dist(x,y) be the Euclidian distance between vectors x and y

• Eps and MinPts be parameters of DBSCAN

Eps-neighborhood Eps-neighborhood of a point p w.r.t. Eps is NEps(p) =
{q ∈ D|dist(p, q) ≤ Eps}. NEps is therefore a set of points having at
most distance of Eps to p.

Core point Point p is a core point w.r.t. Eps and MinPts iff |NEps(p)| ≥
MinPts. A core point has at least MinPts surrounding points within
the radius of Eps.

Direct density-reachability Point p is directly density-reachable from point
q w.r.t. Eps and MinPts iff |NEps(q)| ≥ MinPts and p ∈ NEps(q).
That is, q is a core point and p resides within radius of Eps from q
(p ∈ NEps(q)⇔ dist(p, q) ≤ Eps).

Density-reachability Point pn is density-reachable from point p1 w.r.t.
Eps and MinPts iff there is a set of points {p1, p2, ..., pn−1, pn} so that
pk+1 is directly density-reachable from pk(∀k ≤ n − 1) w.r.t. Eps
and MinPts. Let it be noted that according to the definition of direct
density-reachability p1, p2, ..., pn−1 are core points, but pn necessarily
is not.

Density-connectivity A point p is density-connected to point q (and vice
versa) iff there is a point o so that both p and q are density-reachable
from o w.r.t. Eps and MinPts.

By using these definitions cluster and noise are defined as follows

Cluster C is a non-empty subset of D satisfying the following conditions:

Maximality ∀p, q ∈ D: q ∈ C and p is density-reachable from q ⇒
p ∈ C

Connectivity ∀p, q ∈ C: p is density-connected to q

Noise is a set of points not belonging to any cluster; noise = {p ∈ D|∀i :
p /∈ Ci}

7

2.2 The algorithm

The algorithm below is taken from [1]. It consists of two functions, DB-
SCAN and ExpandCluster. ExpandCluster checks whether the given point
Point is a core point w.r.t. Eps. If it is not, Point is classified as noise.
Otherwise a breadth-first search1 is executed starting from Point, until all
points (the above maximality criterion must be satisfied) density-connected
to Point have been checked and classified as ClId. After a search DBSCAN
updates ClusterId and executes ExpandCluster for succeeding point, until
ExpandCluster has been executed for all points.

function DBSCAN(SetOfPoints, Eps, MinPts) . SetOfPoints is
UNCLASSIFIED

ClusterId := nextId(NOISE);
for i = 1→ SetOfPoints.size do

if Point.ClId = UNCLASSIFIED then
if ExpandCluster(SetOfPoints, Point, ClusterId, Eps, MinPts)

then
ClusterId := nextId(ClusterId);

end if
end if

end for
end function
function ExpandCluster(SetOfPoints, Point, ClId, Eps, MinPts)

seeds := SetOfPoints.regionQuery(Point, Eps);
if seeds.size < MinPts then . no core point

SetOfPoint.changeClId(Point, NOISE);
return false

else . all points in seeds are density-reachable from Point
SetOfPoints.changeClIds(seeds, ClId);
seeds.delete(Point);
while seeds != Empty do

currentP := seeds.first();
result := SetOfPoints.regionQuery(currentP, Eps);
if result.size >= MinPts then

for i = 1→ result.size do
resultP := result.get(i);
if resultP.ClId ∈ UNCLASSIFIED,NOISE then

if resultP.ClId = UNCLASSIFIED then
1the provided implementation uses depth-first search instead

8

seeds.append(resultP);
end if
SetOfPoints.changeClId(resultP, ClId);

end if . UNCLASSIFIED or NOISE
end for

end if . currentP was core point
end while
return true

end if
end function

2.2.1 Time complexity

When breadth-width search is being repeated for each of the points, but the
results of the earlier searches are considered (search is not being repeated
for points that already have been found and classified as a part of a cluster),
each point is handled at most two times; either once as a point found by
search and second time as a seed point, or vice versa for boundary points (at
first they may be classified as noise).

Clearly the most demanding task in terms of time complexity is region-
Query. It is called at most once for each data point. The most sophisticated
implementations utilize spatial search trees such as R* tree, hence reducing
time complexity of each query to O(log n) and time complexity of approxi-
mately n queries to O(n log n). A more coarse approach, such as inspecting
each of the distances for the regional query by a brute force approach, yields
total time complexity of O(n2). 2

2.3 Inducing convenient parameters for DBSCAN

It has been suggested that in practise MinPts = 4 is an optimal value between
computing time and accuracy. Furthermore, it has been suggested that value
for Eps could be chosen based on the following algorithm. [1]

2In the provided implementation data points are sorted along to x-axis, thereby notably,
but yet linearly, reducing amount of points needed to inspect for regional query. The worst
case considered, time complexity of the implementation remains O(n2). Actually it would
have been tempting to experiment with initializing a spatial search tree using hierarchical
clustering methods or hierarchical K-means repeated iteratively on centroids, but in most
cases the worst, yet considerably rare, case of regional query still had been O(n2). In
addition, using a clustering method in order to use another clustering method would have
been awkward.

9

For each p ∈ D

• find point q being (MinPts)th nearest to p

• array.add(dist(p,q))

Sort array to descending order

Find a point x in array where decreasing of values significantly reduces
("knee point")

Set Eps = array[x]

However, in [1] finding the desired point x was discussed only shortly
and implementation of such an algorithm was generally left for the reader to
consider. There are some algorithms available, such as F-ratio variance test
or Knee Point Detection on BIC, but I intended an algorithm on my own
instead out of curiosity. The algorithm is discussed below.

A good algorithm should find a distinctive knee point of the global skew
rather than random local abnormalities that are likely to occur in the graph
as well. Therefore an algorithm searching for candidates should inspect its
local skew on a global scale rather than on a local scale. It very rapidly
occured to me that instead of comparing each point to a set number of
its immediate succeeding values (which undesirably emphasizes local abnor-
malities) I should inspect the difference of candidate’s value related to more
distant values. The algorithm then quickly emerged more as a result of sound
reasoning and combination of trial and error rather than formal concluding.

At first the results of the algorithm were visually pleasing to the human
observer. As promising as the initial results were, I later discovered that the
output of the algorithm in general is unpredictable, hence suggesting that
promising initial results were just due to good luck.

2.3.1 The algorithm

The algorithm, illustrated in figure 3, proceeds iteratively as follows:

Split graph horizontally to n sections

Estimate approximate angle on each section by inspecting the first and last
point of a section

Find two sections next to each other having the biggest difference in angles

Join at most m (where m is even) sections neighboring the found boundary

10

Repeat for graph inside the joined area until resolution of the restricted
graph is too small for splitting

Select average graph value from remaining area to Eps

A pseudo code representation is below 3.
function FindEps(Array, m, n) . Array is already sorted

Range := from 1 to Array.length
while Range.length > m do

Ranges := Range.split(n)
best_difference := 0
Angles[0] := [tan((Array[Ranges[0].start] - Array[Ranges[0].end]) /

Ranges[0].length), 0]
for i = 1→ n− 1 do

Angles[i mod 2] := tan((Array[Ranges[i].start] - Array[Ranges[i].end])
/ Ranges[i].length)

if |Angles[0]−Angles[1]| ≥ best_difference then
best_difference := |Angles[0]−Angles[1]|
if i− 1−m/2 < 0 then

Surroundings := from Ranges[0].start to Ranges[i − 1 +
m/2].end

else if i− 1 +m/2 ≥ n then
Surroundings := from Ranges[i−1−m/2].start to Ranges[n−

1].end
else

Surroundings := from Ranges[i−1−m/2].start to Ranges[i−
1 +m/2].end

end if
end if

end for
Range := Surroundings

end while
sum := 0
for i = Range.start→ Range.end do

sum := sum + Array[i]
end for
return sum / Array.length

end function
3Implementation of this can be found from DBSCAN::initialize in the provided DB-

SCAN implementation

11

Figure 3: Illustrated example of the algorithm with graph f(x), x ∈ [0, 100]

12

2.3.2 Time complexity of the algorithm

Within each iteration at least (n − m)/n of array cells are discarded from
later inspections (at most m from n sections are kept). Let k be the number
of cells in the array. Time complexity is now O(mlogn/mk).

2.3.3 Evaluation of the algorithm

Initially the algorithm was simply implemented with hard-coded values of
n = 3 and m = 2. On this setup the results on data sets S1, S2, S3 and S4
were promising; Eps value returned by the algorithm yielded visually pleasing
DBSCAN clusterings. After initial results m and n were parameterized for
further experimentation.

Table 1 demonstrates experimentations on parameter n. Parameter m
was set to a biggest power of two less than n in order to split approxi-
mately equally or less than half on each iteration. DBSCAN was run on
achieved value for Eps and number of clusters C and noise percentage NP
were recorded from each result.

These experimentations show that increase in value n introduces ran-
domness to yielded Eps values. In general probability of low Eps is likely to
increase within n, but unpredictable exceptions also occur.

Although low values of n are more likely to yield visually pleasing re-
sults, there is considerable instability among those Eps-values as well, hence
suggesting that every possible value of n yields is able to conduct bad Eps
for some data. That probability is likely to increase within n.

On table 2 different values of m were experimented in order to find con-
venient Eps. Clustering was then applied to the given dataset and resulting
number of clusters C and noise percentage NP was recorded. These results
suggest that for larger values of n there is no such value m that would yield
merely acceptable Eps for some data sets; most notably amount of points
detected as noise in S1 and S2 are considerably high. It should be noted
that S1 and S2 have the most distinctive patterns.

13

m n s1 s2 s3 s4
2 3 ε = 13118.1

C=30
NP=9.0%

ε = 17411.5
C=19
NP=7.4%

ε = 13494.9
C=53
NP=12.9%

ε = 15448.8
C=19
NP=5.8%

2 4 ε = 13610.7
C=27
NP=8.3%

ε = 28644.9
C=3
NP=0.8%

ε = 14360.6
C=33
NP=10.8%

ε = 14850.8
C=23
NP=6.5%

4 5 ε = 6032.2
C=80
NP=40.0%

ε = 16210.6
C=23
NP=9.0%

ε = 13567.6
C=50
NP=12.6%

ε = 14591.1
C=25
NP=6.7%

4 6 ε = 8540.1
C=67
NP=23.2%

ε = 18521.5
C=19
NP=6.1%

ε = 13904.3
C=44
NP=11.7%

ε = 14593.1
C=25
NP=6.7%

4 7 ε = 12739.4
C=34
NP=9.7%

ε = 15976.1
C=23
NP=9.3%

ε = 12590.0
C=62
NP=16.1%

ε = 12734.3
C=53
NP=10.6%

4 8 ε = 9161.4
C=63
NP=19.6%

ε = 11037.1
C=63
NP=22.3%

ε = 13497.9
C=52
NP=12.8%

ε = 12450.8
C=52
NP=11.7%

8 9 ε = 9071.4
C=61
NP=20.2%

ε = 1513.3
C=27
NP=93.0%

ε = 11149.0
C=94
NP=21.7%

ε = 12754.8
C=54
NP=10.3%

8 10 ε = 5886.4
C=79
NP=41.5%

ε = 1984.6
C=32
NP=90.0%

ε = 12779.3
C=60
NP=15.4%

ε = 12720.9
C=53
NP=10.7%

8 11 ε = 1525.4
C=35
NP=90.3%

ε = 875.0
C=9
NP=98.0%

ε = 13497.9
C=52
NP=12.8%

ε = 11739.1
C=61
NP=14.4%

8 12 ε = 4031.2
C=91
NP=61.8%

ε = 1526.5
C=25
NP=92.9%

ε = 13634.1
C=47
NP=12.3%

ε = 12120.7
C=50
NP=13.4%

8 15 ε = 1690.2
C=34
NP=88.8%

ε = 1033.1
C=19
NP=96.5%

ε = 11133.0
C=95
NP=21.7%

ε = 14436.1
C=25
NP=7.0%

16 31 ε = 3407.2
C=70
NP=70.8%

ε = 8013.1
C=93
NP=37.2%

ε = 6050.8
C=96
NP=61.7%

ε = 8661.7
C=127
NP=32.4%

64 100 ε = 4526.7
C=93
NP=55.6%

ε = 8302.2
C=84
NP=35.2%

ε = 4388.0
C=70
NP=76.7%

ε = 7889.1
C=130
NP=39.6%

2048 2500 ε = 2594.2
C=49
NP=80.2%

ε = 19291.1
C=20
NP=5.2%

ε = 4184.3
C=62
NP=78.3%

ε = 18605.4
C=7
NP=3.7%

Table 1: Experimentation with different values of n

14

m n s1 s2 s3 s4
2 15 ε = 2243.4

C=38
NP=84.4%

ε = 1122.5
C=25
NP=95.7%

ε = 12637.7
C=62
NP=15.9%

ε = 12753.4
C=55
NP=10.3%

4 15 ε = 950.2
C=18
NP=96.1%

ε = 998.3
C=14
NP=97.2%

ε = 13506.0
C=50
NP=12.8%

ε = 12451.7
C=52
NP=11.7%

6 15 ε = 1799.7
C=35
NP=87.5%

ε = 1510.0
C=27
NP=93.0%

ε = 11146.3
C=94
NP=21.7%

ε = 13706.3
C=37
NP=8.2%

8 15 ε = 1690.2
C=34
NP=88.8%

ε = 1033.1
C=19
NP=96.5%

ε = 11133.0
C=95
NP=21.7%

ε = 14436.1
C=25
NP=7.0%

10 15 ε = 1530.6
C=35
NP=90.2%

ε = 1985.9
C=32
NP=90.0%

ε = 9651.9
C=104
NP=30.7%

ε = 10450.7
C=85
NP=20.2%

12 15 ε = 4305.9
C=87
NP=59.0%

ε = 1250.9
C=19
NP=95.2%

ε = 11133.0
C=95
NP=21.7%

ε = 8237.5
C=130
NP=36.6%

14 15 ε = 2409.3
C=44
NP=82.0%

ε = 1597.9
C=27
NP=92.2%

ε = 11179.5
C=93
NP=21.6%

ε = 7695.2
C=126
NP=42.0%

Table 2: Experimentation with different values of m

15

2.3.4 Conclusions

Although lower n yields better results, the procedure of the algorithm is
essentially the same ∀n ≥ 3, hence suggesting that the algorithm is also
likely to yield bad value for Eps on n = 3 with some carefully selected
measurement data. The algorithm can be used but with consideration.

2.3.5 Future work

An intresting alternative approach could be to calculate weighted local aver-
age from neighboring values rather than taking directly the value of a split
point. This would reduce effect of possibly abnormal value on the splitting
boundary. Experimentations on this are, however, not discussed due to lack
of time preserved for this project work.

The proposed idea is illustrated in figure 4: the graph reduces constantly
right before the split boundary and this trend continues a while after passing
the boundary, but unfortunately there is a steep temporary decline near
the boundary reducing the representativeness of approximate lines. As the
temporary decline happens to be inside the region inspected for local average,
the average is able to reduce the effects of this temporary abnormality of a
graph, hence yielding better approximation of the graph.

Figure 4: Illustration of taking the local average to consideration

16

References

[1] Martin Ester; Hans-Peter Kriegel; Jörg Sander; Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with
noise. Proceedings of 2nd International Conference on Knowledge Dis-
covery and Data Mining (KDD-96), 1998.

17

A Software usage

A.1 Preparations

The software has been implemented in Ruby, so no compiling is required. In
order to run the software, following preparations must be considered:

Install Ruby from http://www.ruby-lang.org/en/downloads/

Install required Ruby gems by executing these lines in command prompt
/ terminal

• gem install rubysdl-mswin32-1.9 (On Windows)

• gem install rubysdl (On Linux)

In case of problems on Linux consider using Ruby SDL implementation
provided by your Linux distribution specific package manager instead.

A.2 Usage

Using command prompt / terminal change local directory to project direc-
tory and type "ruby run.rb -?" for instructions. Some possible examples of
usage:

ruby run.rb s1.txt -o output.bmp Cluster s1.txt and write the resulting
image to output.bmp.

ruby run.rb s1.txt s2.txt -l log.txt -b Run clustering for s1.txt and s2.txt
and write a log file to log.txt. Run in batch mode; once clustering is
finished, clustering s2.txt is started without user input.

ruby run.rb s3.txt s4.txt -l log.txt -o %n-output.bmp -b -s 1024 768
Write a log file log.txt and resulting images s3-output.bmp and s4-
output.bmp with resolution 1024x768.

18

B Material of the course project work

B.1 Access to the material

Material for the course project work is available at http://vilikki.kapsi.fi/Opiskelu/KLU/work/.
Login credentials for the site are

USER NAME rykelma

PASSWORD dbscan

B.2 Contents of the directory

Directory has at least these files:

article.pdf This paper.

presentation.pdf Presentation of the course project work presenting the
basic idea behind DBSCAN and discussing pros and cons of DBSCAN.

rykelma.zip Implemented clustering software. Available under X11 license.

dbscan_s2.avi A MPEG-4 encoded video of DBSCAN running on S2. In-
tended to use as a part of presentation to demonstrate progress of
depth-first search implementation.

19

http://vilikki.kapsi.fi/Opiskelu/KLU/work/

	Introduction
	Issues of traditional clustering methods
	Pros of DBSCAN
	Cons of DBSCAN

	DBSCAN
	Definitions
	The algorithm
	Time complexity

	Inducing convenient parameters for DBSCAN
	The algorithm
	Time complexity of the algorithm
	Evaluation of the algorithm
	Conclusions
	Future work

	Software usage
	Preparations
	Usage

	Material of the course project work
	Access to the material
	Contents of the directory

